These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CLINICAL Review #: the role of receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/osteoprotegerin: clinical implications.
    Author: Vega D, Maalouf NM, Sakhaee K.
    Journal: J Clin Endocrinol Metab; 2007 Dec; 92(12):4514-21. PubMed ID: 17895323.
    Abstract:
    CONTEXT: Receptor activator of nuclear factor-kappaB ligand (RANKL), receptor activator of nuclear factor-kappaB (RANK), and osteoprotegerin (OPG) play a central role in bone remodeling and disorders of mineral metabolism. EVIDENCE ACQUISITION: A PubMed search was conducted from January 1992 until 2007 for basic, observational, and clinical studies in subjects with disorders related to imbalances in the RANK/RANKL/OPG system. EVIDENCE SYNTHESIS: RANK, RANKL, and OPG are members of the TNF receptor superfamily. The pathways involving them in conjunction with various cytokines and calciotropic hormones play a pivotal role in bone remodeling. Several studies involving mutations in the genes encoding RANK and OPG concluded in the discovery of a number of inherited skeletal disorders. In addition, basic and clinical studies established a consistent relationship between the RANK/RANKL/OPG pathway and skeletal lesions related to disorders of mineral metabolism. These studies were a stepping stone in further defining the role of the RANK/RANKL/OPG pathway in osteoporosis, rheumatoid arthritis, bone loss associated with malignancy-related skeletal diseases, and its relationship to vascular calcifications. Subsequently, the further understanding of this pathway led to the development of new therapeutic modalities including the human monoclonal antibody to RANKL and recombinant OPG as a target for treatment of postmenopausal osteoporosis and multiple myeloma. CONCLUSIONS: The RANK/RANKL/OPG system mediates the effects of calciotropic hormones and, consequently, alterations in their ratio are key in the development of several clinical conditions. New agents with the potential to block effects of RANKL have emerged for treatment of postmenopausal osteoporosis and malignancy-related skeletal disease.
    [Abstract] [Full Text] [Related] [New Search]