These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exchange and reduction of Cu(2+) ions in clinoptilolite. Author: Iznaga IR, Petranovskii V, Fuentes GR, Mendoza C, Aguilar AB. Journal: J Colloid Interface Sci; 2007 Dec 15; 316(2):877-86. PubMed ID: 17897668. Abstract: The ion-exchange and reduction processes for Cu(2+) ions in clinoptilolite from the Caimanes deposit (Moa, Cuba) were studied at different temperatures. The ion-exchange studies were done to determine the kinetic parameters of Cu(2+) removal from solution by this clinoptilolite modified previously to NH(+)(4) form, and thermodynamic parameters of Cu(2+) elution from zeolite using NH(4)Cl solution. The results show that temperature increase favors the exchange and that it is a reversible process. The external diffusion rate appreciably increases with temperature, while, the internal diffusion coefficient rises relatively little. This means that besides ion exchange other processes (such as precipitation of the low-solubility phase and/or salt adsorption) occur, which cause copper removal from solution and affect the intracrystalline diffusion of the ions. For steric reasons the exchange of [Cu(H(2)O)(6)](2+) ions from a solution must occur with a number of water molecules n smaller than 6 (6 > n > or = 0). Cu(2+) reduction by hydrogen and the formation of Cu-particles in the clinoptilolite were verified. The Cu(2+) reduction mechanism is complex, indirect, and sensitive to reduction temperature; consequently, Cu(+)(n) states intermediate between Cu(2+) and Cu(0) should be present in the reduced samples.[Abstract] [Full Text] [Related] [New Search]