These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression and maturation of Sendai virus vector-derived CFTR protein: functional and biochemical evidence using a GFP-CFTR fusion protein.
    Author: Ban H, Inoue M, Griesenbach U, Munkonge F, Chan M, Iida A, Alton EW, Hasegawa M.
    Journal: Gene Ther; 2007 Dec; 14(24):1688-94. PubMed ID: 17898794.
    Abstract:
    Sendai virus (SeV) vector has been shown to efficiently transduce airway epithelial cells. As a precursor to the potential use of this vector for cystic fibrosis (CF) gene therapy, the correct maturation of the SeV vector-derived CF transmembrane conductance regulator (CFTR) protein was examined using biochemical and functional analyses. We constructed a recombinant SeV vector, based on the fusion (F) gene-deleted non-transmissible SeV vector, carrying the GFP-CFTR gene in which the N terminus of CFTR was fused to green fluorescence protein (GFP). This vector was recovered and propagated to high titers in the packaging cell line. Western blotting using an anti-GFP antibody detected both the fully glycosylated (mature) and the core-glycosylated (immature) proteins, indicating that SeV vector-derived GFP-CFTR was similar to endogenous CFTR. We also confirmed the functional channel activity of GFP-CFTR in an iodide efflux assay. The efficient expression of GFP-CFTR, and its apical surface localization, were observed in both MDCK cells in vitro, and in the nasal epithelium of mice in vivo. We concluded that recombinant SeV vector, a cytoplasmically maintained RNA vector, is able to direct production of a correctly localized, mature form of CFTR, suggesting the value of this vector for studies of CF gene therapy.
    [Abstract] [Full Text] [Related] [New Search]