These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Magnetic Fe2O3-polystyrene/PPy core/shell particles: bioreactivity and self-assembly. Author: Mangeney C, Fertani M, Bousalem S, Zhicai M, Ammar S, Herbst F, Beaunier P, Elaissari A, Chehimi MM. Journal: Langmuir; 2007 Oct 23; 23(22):10940-9. PubMed ID: 17900197. Abstract: This paper describes the synthesis of new magnetic, reactive polystyrene/polypyrrole core/shell latex particles. The core consists of a polystyrene microsphere containing gamma-Fe2O3 superparamagnetic nanoparticles (PSmag), and the shell is made of reactive N-carboxylic acid-functionalized polypyrrole (PPyCOOH). These PSmag-PPyCOOH latex particles, average diameter 220 nm, were prepared by copolymerization of pyrrole (Py) and the active carboxyl-functionalized pyrrole (PyCOOH) in the presence of PSmag particles. PNVP was used as a steric stabilizer. The functionalized polypyrrole-coated PSmag particles were characterized in terms of their particle size, surface morphology, chemical composition, and electrochemical and magnetic properties using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry, and SQUID magnetometry. Activation of the particle surface carboxyl groups was achieved using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS), which helps transform the carboxyl groups into activated ester groups (NSE). The activated particles, PSmag-PPyNSE, were further evaluated as bioadsorbents of biotin used as a model biomolecule. It was shown that biotin was immobilized at the surface of the PSmag-PPyNSE particles by forming interfacial amide groups. The assemblies of PSmag-PPyCOOH particles on glass plates were further investigated. When no magnetic field is applied, the particles assemble into 3D colloidal crystals. In contrast, under a magnetic field, one-particle-thick chains gathered in hedgehog-like architectures are obtained. Furthermore, PSmag-PPyCOOH coated ITO electrodes were shown to be electroactive and electrochemically stable, thus offering potentialities for creating novel high-specific-area materials for biosensing devices where the conducting polymer component would act as the transducer through its conductive properties.[Abstract] [Full Text] [Related] [New Search]