These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Author: Tao C, Zhang Y, Hottinger DG, Jiang JJ.
    Journal: J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863.
    Abstract:
    A model constructed from Navier-Stokes equations and a two-mass vocal fold description is proposed in this study. The composite model not only has the capability to describe the aerodynamics in a vibratory glottis but also can be used to study the vocal fold vibration under the driving of the complex airflow in the glottis. Numerical simulations show that this model can predict self-oscillations of the coupled glottal aerodynamics and vocal fold system. The Coanda effect could occur in the vibratory glottis even though the vocal folds have left-right symmetric prephonatory shape and tissue properties. The Coanda effect causes the asymmetric flow in the glottis and the difference in the driving force on the left and right vocal folds. The different pressures applied to the left and right vocal folds induce their displacement asymmetry. By using various lung pressures (0.6-2.0 kPa) to drive the composite model, it was found that the asymmetry of the vocal fold displacement is increased from 1.87% to 11.2%. These simulation results provide numerical evidence for the presence of asymmetric flow in the vibratory glottis; moreover, they indicate that glottal aerodynamics is an important factor in inducing the asymmetric vibration of the vocal folds.
    [Abstract] [Full Text] [Related] [New Search]