These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nanoparticles in nematic liquid crystals: interactions with nanochannels. Author: Hung FR, Gettelfinger BT, Koenig GM, Abbott NL, de Pablo JJ. Journal: J Chem Phys; 2007 Sep 28; 127(12):124702. PubMed ID: 17902926. Abstract: A mesoscale theory for the tensor order parameter Q is used to investigate the structures that arise when spherical nanoparticles are suspended in confined nematic liquid crystals (NLCs). The NLC is "sandwiched" between a wall and a small channel. The potential of mean force is determined between particles and the bottom of the channels or between several particles. Our results suggest that strong NLC-mediated interactions between the particles and the sidewalls of the channels, on the order of hundreds of k(B)T, arise when the colloids are inside the channels. The magnitude of the channel-particle interactions is dictated by a combination of two factors, namely, the type of defect structures that develop when a nanoparticle is inside a channel, and the degree of ordering of the nematic in the region between the colloid and the nanochannel. The channel-particle interactions become stronger as the nanoparticle diameter becomes commensurate with the nanochannel width. Nanochannel geometry also affects the channel-particle interactions. Among the different geometries considered, a cylindrical channel seems to provide the strongest interactions. Our calculations suggest that small variations in geometry, such as removing the sharp edges of the channels, can lead to important reductions in channel-particle interactions. Our calculations for systems of several nanoparticles indicate that linear arrays of colloids with Saturn ring defects, which for some physical conditions are not stable in a bulk system, can be stabilized inside the nanochannels. These results suggest that nanochannels and NLCs could be used to direct the assembly of nanoparticles into ordered arrays with unusual morphologies.[Abstract] [Full Text] [Related] [New Search]