These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Control of tip-to-sample distance in atomic force microscopy: a dual-actuator tip-motion control scheme.
    Author: Jeong Y, Jayanth GR, Menq CH.
    Journal: Rev Sci Instrum; 2007 Sep; 78(9):093706. PubMed ID: 17902954.
    Abstract:
    The control of tip-to-sample distance in atomic force microscopy (AFM) is achieved through controlling the vertical tip position of the AFM cantilever. In the vertical tip-position control, the required z motion is commanded by laser reading of the vertical tip position in real time and might contain high frequency components depending on the lateral scanning rate and topographical variations of the sample. This paper presents a dual-actuator tip-motion control scheme that enables the AFM tip to track abrupt topographical variations. In the dual-actuator scheme, an additional magnetic mode actuator is employed to achieve high bandwidth tip-motion control while the regular z scanner provides the necessary motion range. This added actuator serves to make the entire cantilever bandwidth available for tip positioning, and thus controls the tip-to-sample distance. A fast programmable electronics board was employed to realize the proposed dual-actuator control scheme, in which model cancellation algorithms were implemented to enlarge the bandwidth of the magnetic actuation and to compensate the lightly damped dynamics of the cantilever. Experiments were conducted to illustrate the capabilities of the proposed dual-actuator tip-motion control in terms of response speed and travel range. It was shown that while the bandwidth of the regular z scanner was merely a small fraction of the cantilever's bandwidth, the dual-actuator control scheme led to a tip-motion control system, the bandwidth of which was comparable to that of the cantilever, where the dynamics overdamped, and the motion range comparable to that of the z scanner.
    [Abstract] [Full Text] [Related] [New Search]