These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional magnetic resonance imaging within the rat spinal cord following peripheral nerve injury. Author: Majcher K, Tomanek B, Tuor UI, Jasinski A, Foniok T, Rushforth D, Hess G. Journal: Neuroimage; 2007 Dec; 38(4):669-76. PubMed ID: 17904387. Abstract: Functional magnetic resonance imaging (fMRI) was used to detect the effects of graded peripheral nerve injury at the spinal level. Graded peripheral nerve injury in rats was accomplished by transection of nerves entering the spinal cord at the L3 and L4 levels of the spinal cord segments. Electrical stimulation of the hindpaw was used to elicit activity within the spinal cord. The stimulation experimental paradigm consisted of 62 functional images, 5 slices each, with a total of 3 rest and 2 stimulation periods. A 9.4 T MRI system and a quadrature volume rf coil covering the lumbar spinal cord were used for the fMRI study. Sets of fast spin echo images were acquired repeatedly following sham preparatory surgery under control conditions and in rats following sham surgery (pre nerve cut), followed by L3 nerve and then L4 nerve section. In rats with sham surgery, there was a significant activation within the dorsal horn of slices corresponding to L3 and L4 spinal cord segments. Following section of the L3 nerve, there was a reduction in the number of active voxels in the L3 and L4 spinal cord segments. The activation was reduced further by sectioning of the L4 nerve. Thus, following an increasing loss of axonal connections to the spinal cord, there was a decreasing number of active voxels within the spinal cord. The results demonstrate that spinal fMRI in the rat has sufficient sensitivity to detect within the spinal cord the effects of a graded reduction in peripheral connectivity.[Abstract] [Full Text] [Related] [New Search]