These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MyD88, IRAK1 and TRAF6 knockdown in human chondrocytes inhibits interleukin-1-induced matrix metalloproteinase-13 gene expression and promoter activity by impairing MAP kinase activation.
    Author: Ahmad R, Sylvester J, Zafarullah M.
    Journal: Cell Signal; 2007 Dec; 19(12):2549-57. PubMed ID: 17905570.
    Abstract:
    Interleukin-1 (IL-1) is the major prototypic proinflammatory cytokine that stimulates degradation of cartilage in arthritis by inducing prominent collagen II-degrading matrix metalloproteinase-13 (MMP-13). Nothing is known about the involvement of adaptor proteins, MyD88, IRAK1 and TRAF6 in MMP-13 regulation. Here we investigated for the first time the role of these proteins in IL-1-regulated MMP-13 expression in chondrocytes. MyD88 homodimerization inhibitory peptide diminished the expression of MMP-13 gene, promoter activity, phosphorylation of mitogen-activated protein kinases (MAPKs), c-Jun and activating protein 1 (AP-1) activity. Knockdown of MyD88, IRAK1 and TRAF6 by RNA interference (RNAi) drastically down-regulated the expression of IL-1-induced MMP-13 mRNA and protein levels and MMP-13 promoter-driven luciferase activity. Non-specific control siRNA had no effect. Mechanisms of MMP-13 inhibition involved reduced phosphorylation of ERK, p38, JNK and c-Jun as well as AP-1 transcription factor binding activity. The genetic evidence presented here demonstrates that MyD88, IRAK1 and TRAF6 proteins are crucial early mediators for the IL-1-induced MMP-13 regulation through MAPK pathways and AP-1 activity. These proteins could constitute important therapeutic targets for arthritis-associated cartilage loss by MMP-13.
    [Abstract] [Full Text] [Related] [New Search]