These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: C-Terminal truncation affects subunit exchange of human alphaA-crystallin with alphaB-crystallin.
    Author: Kallur LS, Aziz A, Abraham EC.
    Journal: Mol Cell Biochem; 2008 Jan; 308(1-2):85-91. PubMed ID: 17909943.
    Abstract:
    In human lenses, C-terminal cleavage of alphaA-crystallin at residues 172,168, and 162 have been reported. The effect of C-terminal truncation of alphaA-crystallin on subunit exchange and heterooligomer formation with alphaB-crystallin and homooligomer formation with native alphaA-crystallin is not known. We have conducted fluorescence resonance energy transfer studies which have shown that the rates of subunit exchange of alphaA(1-172 )and alphaA(1-168 )with alphaB-wt were two-fold lower than for alphaA-wt interacting with alphaB-wt. The subunit exchange rate between alphaA(1-162) and alphaB-wt was six-fold lower. These data suggest that cleavage of the C-terminal residues could significantly affect heterooligomerization. On the other hand, the subunit exchange rates between alphaA-wt and the truncated alphaA-crystallins were either unchanged or only slightly decreased, which suggest that homooligomerization may not be significantly influenced by C-terminal truncation. The main conclusion from this study is that cleavage of C-terminal residues of alphaA-crystallin including the nine residues of the flexible tail is expected to significantly affect the formation of heteroaggregates. Reconstitution experiments showed that the presence of an intact C-terminus is essential for the formation of fully integrated heteroaggregates with equal proportion of alphaA and alphaB subunits.
    [Abstract] [Full Text] [Related] [New Search]