These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Induction of endoplasmic reticulum stress-induced beta-cell apoptosis and accumulation of polyubiquitinated proteins by human islet amyloid polypeptide.
    Author: Huang CJ, Haataja L, Gurlo T, Butler AE, Wu X, Soeller WC, Butler PC.
    Journal: Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1656-62. PubMed ID: 17911343.
    Abstract:
    The islet in type 2 diabetes is characterized by an approximately 60% beta-cell deficit, increased beta-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). Human IAPP (hIAPP) but not rodent IAPP (rIAPP) forms toxic oligomers and amyloid fibrils in an aqueous environment. We previously reported that overexpression of hIAPP in transgenic rats triggered endoplasmic reticulum (ER) stress-induced apoptosis in beta-cells. In the present study, we sought to establish whether the cytotoxic effects of hIAPP depend on its propensity to oligomerize, rather than as a consequence of protein overexpression. To accomplish this, we established a novel homozygous mouse model overexpressing rIAPP at a comparable expression rate and, on the same background, as a homozygous transgenic hIAPP mouse model previously reported to develop diabetes associated with beta-cell loss. We report that by 10 wk of age hIAPP mice develop diabetes with a deficit in beta-cell mass due to increased beta-cell apoptosis. The rIAPP transgenic mice counterparts do not develop diabetes or have decreased beta-cell mass. Both rIAPP and hIAPP transgenic mice have increased expression of BiP, but only hIAPP transgenic mice have elevated ER stress markers (X-box-binding protein-1, nuclear localized CCAAT/enhancer binding-protein homologous protein, active caspase-12, and accumulation of ubiquitinated proteins). These findings indicate that the beta-cell toxic effects of hIAPP depend on the propensity of IAPP to aggregate, but not on the consequence of protein overexpression.
    [Abstract] [Full Text] [Related] [New Search]