These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Caulollins from Caulobacter crescentus, a pair of partially unstructured proteins of betagamma-crystallin superfamily, gain structure upon binding calcium.
    Author: Jobby MK, Sharma Y.
    Journal: Biochemistry; 2007 Oct 30; 46(43):12298-307. PubMed ID: 17915944.
    Abstract:
    The betagamma-crystallin superfamily comprises members from various taxa and species, which have similar domain topologies as that of lens beta- and gamma-crystallins. We have studied new microbial members of this understudied betagamma-crystallin superfamily from the bacterium Caulobacter crescentus. These proteins, which we named "caulollins", are paralogues with a single betagamma-crystallin domain, made up of two Greek key motifs with AB-type arrangement seen in gamma-crystallin. The second Greek key motif has Cys in place of a generally conserved Phe/Tyr residue, and the Tyr corner, considered important for the proper betagamma-crystallin fold, is missing, making this a sequentially diverse atypical betagamma-crystallin domain. This atypical domain binds two Ca2+ with moderate affinity (0.8-20 microM). In apo form, caulollins are partially unstructured proteins and gain structure upon binding Ca2+. Unlike many other microbial betagamma-crystallin domains, this domain is monomeric, though in the presence of Ca2+ it becomes more compact. Ca2+ binding increases the intrinsic stability of proteins, suggesting the role of Ca2+ as an extrinsic stabilizer. N-Terminal extension does not play any role in modulating Ca2+ binding, intrinsic stability, or oligomerization. We noted that there are several such variant domains in the genomes of unrelated species. It appears that caulollins along with these members form a subfamily in the betagamma-crystallin superfamily that would be partially unstructured in apo form, unlike many other domains from lens or microbial crystallins. This work further suggests that Ca2+ binding is a widespread feature of the betagamma-crystallin superfamily.
    [Abstract] [Full Text] [Related] [New Search]