These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of salinity and light on organic carbon and nitrogen uptake in a hypersaline microbial mat. Author: Yannarell AC, Paerl HW. Journal: FEMS Microbiol Ecol; 2007 Dec; 62(3):345-53. PubMed ID: 17916075. Abstract: Utilization of dissolved organic matter (DOM) is thought to be the purview of heterotrophic microorganisms, but photoautotrophs can take up dissolved organic nitrogen (DON) and dissolved organic carbon (DOC). This study investigated DOC and DON uptake in a laminated cyanobacterial mat community from hypersaline Salt Pond (San Salvador, Bahamas). The total community uptake of (3)H-labeled substrates was measured in the light and in the dark and under conditions of high and low salinity. Salinity was the primary control of DOM uptake, with increased uptake occurring under low-salinity, 'freshened' conditions. DOC uptake was also enhanced in the light as compared with the dark and in samples incubated with the photosystem II inhibitor 3(3,4-dichlorophenyl)-1, 1-dimethylurea, suggesting a positive association between photosynthetic activity and DOC uptake. Microautoradiography revealed that some DOM uptake was attributed to cyanobacteria. Cyanobacteria DOM uptake was negatively correlated with that of smaller filamentous microorganisms, and DOM uptake by individual coccoid cells was negatively correlated with uptake by colonial coccoids. These patterns of activity suggest that Salt Pond microorganisms are engaged in resource partitioning, and DOM utilization may provide a metabolic boost to both heterotrophs and photoautrophs during periods of lowered salinity.[Abstract] [Full Text] [Related] [New Search]