These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neurogenic responses to amyloid-beta plaques in the brain of Alzheimer's disease-like transgenic (pPDGF-APPSw,Ind) mice. Author: Gan L, Qiao S, Lan X, Chi L, Luo C, Lien L, Yan Liu Q, Liu R. Journal: Neurobiol Dis; 2008 Jan; 29(1):71-80. PubMed ID: 17916429. Abstract: Formation and accumulation of amyloid-beta (A beta) plaques are associated with declined memory and other neurocognitive function in Alzheimer's disease (AD) patients. However, the effects of A beta plaques on neural progenitor cells (NPCs) and neurogenesis from NPCs remain largely unknown. The existing data on neurogenesis in AD patients and AD-like animal models remain controversial. For this reason, we utilized the nestin second-intron enhancer controlled LacZ (pNes-LacZ) reporter transgenic mice (pNes-Tg) and Bi-transgenic mice (Bi-Tg) containing both pPDGF-APPSw,Ind and pNes-LacZ transgenes to investigate the effects of A beta plaques on neurogenesis in the hippocampus and other brain regions of the AD-like mice. We chose transgenic mice at 2, 8 and 12 months of age, corresponding to the stages of A beta plaque free, plaque onset and plaque progression to analyze the effects of A beta plaques on the distribution and de novo neurogenesis of (from) NPCs. We demonstrated a slight increase in the number of NPCs in the hippocampal regions at the A beta plaque free stage, while a significant decrease in the number of NPCs at A beta plaque onset and progression stages. On the other hand, we showed that A beta plaques increase neurogenesis, but not gliogenesis from post-mitotic NPCs in the hippocampus of Bi-Tg mice compared with age-matched control pNes-Tg mice. The neurogenic responses of NPCs to A beta plaques suggest that experimental approaches to promote de novo neurogenesis may potentially improve neurocognitive function and provide an effective therapy for AD.[Abstract] [Full Text] [Related] [New Search]