These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Muscle metabolic, SR Ca(2+) -cycling responses to prolonged cycling, with and without glucose supplementation. Author: Duhamel TA, Green HJ, Stewart RD, Foley KP, Smith IC, Ouyang J. Journal: J Appl Physiol (1985); 2007 Dec; 103(6):1986-98. PubMed ID: 17916667. Abstract: This study investigated the effects of prolonged exercise, with and without glucose supplementation, on metabolism and sarcoplasmic reticulum (SR) Ca(2+)-handling properties in working vastus lateralis muscle. Fifteen untrained volunteers [peak O(2) consumption (Vo(2peak)) = 3.45 +/- 0.17 l/min; mean +/- SE] cycled at approximately 60% Vo(2peak) on two occasions, during which they were provided with either an artificially sweetened placebo beverage (NG) or a 6% glucose (G) beverage (~1.00 g carbohydrate/kg body mass). Beverage supplementation started at 30 min of exercise and continued every 15 min thereafter. SR Ca(2+) handling, metabolic, and substrate responses were assessed in tissue extracted from the vastus lateralis at rest, after 30 min and 90 min of exercise, and at fatigue in both conditions. Plasma glucose during G was 15-23% higher (P < 0.05) than those observed during NG following 60 min of exercise until fatigue. Cycle time to fatigue was increased (P < 0.05) by approximately 19% during G (137 +/- 7 min) compared with NG (115 +/- 6 min). Prolonged exercise reduced (P < 0.05) maximal Ca(2+)-ATPase activity (-18.4%), SR Ca(2+) uptake (-27%), and both Phase 1 (-22.2%) and Phase 2 (-34.2%) Ca(2+)-release rates during NG. The exercise-induced reductions in SR Ca(2+)-cycling properties were not altered during G. The metabolic responses to exercise were all unaltered by glucose supplementation, since no differences in respiratory exchange ratios, carbohydrate and lipid oxidation rates, and muscle metabolite and glycogen contents were observed between NG and G. These results indicate that the maintenance of blood glucose homeostasis by glucose supplementation is without effect in modifying the muscle metabolic, endogenous glycogen, or SR Ca(2+)-handling responses.[Abstract] [Full Text] [Related] [New Search]