These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mapping, genetic isolation, and characterization of genetic loci that determine resistance to atherosclerosis in C3H mice. Author: Wang SS, Shi W, Wang X, Velky L, Greenlee S, Wang MT, Drake TA, Lusis AJ. Journal: Arterioscler Thromb Vasc Biol; 2007 Dec; 27(12):2671-6. PubMed ID: 17916774. Abstract: OBJECTIVE: C3H/HeJ (C3H) mice are extremely resistant to atherosclerosis. To identify the genetic factors involved in lesion initiation, we studied a cross between C3H and the susceptible strain C57BL/6J (B6) on a hyperlipidemic (apolipoprotein E-null) background. METHODS AND RESULTS: Whereas a previous cross in mice fed a Western diet for 16 weeks revealed a very complex inheritance pattern with many significant lesion QTLs, the present cross, on a chow diet, revealed a single major locus on chromosome 9 (lod=5.0, Ath29*), and a suggestive locus on chromosome 4 (lod=2.6, Ath8). QTLs for plasma HDL, total cholesterol, and triglyceride levels were found on chromosome 1 over the ApoA2 gene. Neither of the lesion QTLs were associated with differences in plasma lipid levels or other systemic risk factors, consistent with the concept that genetic factors affecting cellular functions of the vessel wall are important determinants of atherosclerosis susceptibility. We generated a congenic strain for Ath29 and confirmed its contribution to lesion development. Toll-like receptor 4 (Tlr4), the lipopolysaccharide (LPS) receptor, is located in the Ath8 region and is known to be defective in C3H/HeJ mice. We constructed a congenic strain carrying a normal Tlr4 gene on the C3H Apoe-null background and found that the defective Tlr4 does not contribute significantly to lesion resistance during early lesion development. CONCLUSIONS: We identified one major QTL on chromosome 9, Ath29, for early lesion development in the BXH ApoE(-/-) cross fed on a chow diet and confirmed its contribution in congenic mice. We have also determined that Tlr4 on the C3H ApoE(-/-) background does not contribute to early lesion development. *Ath29 is referred to as Ath22 in Su et al 2006.[Abstract] [Full Text] [Related] [New Search]