These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Analysis of the haemolysin transport process through the secretion from Escherichia coli of PCM, CAT or beta-galactosidase fused to the Hly C-terminal signal domain.
    Author: Kenny B, Haigh R, Holland IB.
    Journal: Mol Microbiol; 1991 Oct; 5(10):2557-68. PubMed ID: 1791766.
    Abstract:
    Secretion of haemolysin (HlyA) is secA independent, but depends upon two accessory membrane proteins, HlyB and HlyD, encoded by the hly determinant. A fourth (cytoplasmic) protein, HlyC, is required to activate HlyA post-translationally, but has no role in export. Deletion studies have previously shown that the HlyA molecule contains a targeting signal close to the C-terminus which specifically directs its secretion to the medium. This targeting signal has been variously located within the terminal 27, 53, 60 or 113 amino acids. In this paper, we have sought to confirm the presence of a C-terminal targeting signal and to analyse the specificity of the Hly transport system through fusion of C-terminal fragments of HlyA to heterologous polypeptides. A C-terminal fragment (23 kDa) of HlyA, when fused at the C-terminus, efficiently promoted the secretion of the eukaryotic protein prochymosin (PCM) to the medium via HlyB and HlyD. This result is in contrast to previous findings that prochymosin, preceded by the alkaline phosphatase signal sequence, cannot be translocated across the Escherichia coli inner membrane. The HlyA targeting domain was also used to secrete to the medium varying portions of chloramphenicol acetyltransferase (CAT) and 98 per cent of the beta-galactosidase (LacZ) molecule (both E. coli cytoplasmic proteins). In the case of the PCM and CAT fusions the efficiency of secretion was reduced as the proportion of the PCM and CAT molecule increased. This result is consistent with inhibition of secretion through the irreversible folding of the larger passenger protein fragments, or the occlusion of the HlyA targeting signal by upstream sequences. Analysis of the nature of the C-terminal domain promoting secretion of prochymosin, demonstrated that shortening the signal domain from 218 to 113 amino acids significantly reduced the efficiency of secretion. This result may also reflect the importance of maintaining an independently folded signal motif well separated from a passenger domain.
    [Abstract] [Full Text] [Related] [New Search]