These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ab initio investigation of the complexes between bromobenzene and several electron donors: some insights into the magnitude and nature of halogen bonding interactions. Author: Lu YX, Zou JW, Wang YH, Jiang YJ, Yu QS. Journal: J Phys Chem A; 2007 Oct 25; 111(42):10781-8. PubMed ID: 17918810. Abstract: Halogen bonding, a specific intermolecular noncovalent interaction, plays crucial roles in fields as diverse as molecular recognition, crystal engineering, and biological systems. This paper presents an ab initio investigation of a series of dimeric complexes formed between bromobenzene and several electron donors. Such small model systems are selected to mimic halogen bonding interactions found within crystal structures as well as within biological molecules. In all cases, the intermolecular distances are shown to be equal to or below sums of van der Waals radii of the atoms involved. Halogen bonding energies, calculated at the MP2/aug-cc-pVDZ level, span over a wide range, from -1.52 to -15.53 kcal/mol. The interactions become comparable to, or even prevail over, classical hydrogen bonding. For charge-assisted halogen bonds, calculations have shown that the strength decreases in the order OH- > F- > HCO2- > Cl- > Br-, while for neutral systems, their relative strengths attenuate in the order H2CS > H2CO > NH3 > H2S > H2O. These results agree with those of the quantum theory of atoms in molecules (QTAIM) since bond critical points (BCPs) are identified for these halogen bonds. The QTAIM analysis also suggests that strong halogen bonds are more covalent in nature, while weak ones are mostly electrostatic interactions. The electron densities at the BCPs are recommended as a good measure of the halogen bond strength. Finally, natural bond orbital (NBO) analysis has been applied to gain more insights into the origin of halogen bonding interactions.[Abstract] [Full Text] [Related] [New Search]