These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Function of chlorophyll d in reaction centers of photosystems I and II of the oxygenic photosynthesis of Acaryochloris marina. Author: Itoh S, Mino H, Itoh K, Shigenaga T, Uzumaki T, Iwaki M. Journal: Biochemistry; 2007 Oct 30; 46(43):12473-81. PubMed ID: 17918957. Abstract: Reaction center chlorophylls (Chls) in photosystems II and I were studied in the isolated thylakoid membranes of a cyanobacterium, Acaryochloris marina, which contains Chls d and a as the major and minor pigments, respectively. The membranes contained PS I and II complexes at a 1.8:1 molar ratio on the basis of the spin densities on the tyrosine D radical and the photo-oxidized PS I primary donor (P740+). In the presence of ferricyanide, laser excitation induced bleach at 725 nm that recovered with time constants of 25 micros and 1.2 ms. The signal, designated P725, was suppressed by PS II inhibitors DCMU and hydroxylamine. The P725 spectrum was tentatively assigned to the absorption changes of the special pair Chl d, the accessory Chl d, and the acceptor pheophytin a in PS II. The addition of ascorbate induced the additional signal with a slow decay time constant of 4.5 ms. This signal showed a broad bleach at 740 nm and shift-type absorption changes at around 707 and 685 nm, which were assigned to the absorption changes of PS I special pair of Chl d (P740), the accessory Chl d, and the primary acceptor Chl a (A0), respectively. Mechanisms and the evolution of the Chl-d based reaction centers using far-red light are discussed together with the amino acid sequences of PS II D1 and D2 proteins.[Abstract] [Full Text] [Related] [New Search]