These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Relationship between HIF-1alpha expression and neuronal apoptosis in neonatal rats with hypoxia-ischemia brain injury.
    Author: Li L, Qu Y, Li J, Xiong Y, Mao M, Mu D.
    Journal: Brain Res; 2007 Nov 14; 1180():133-9. PubMed ID: 17920049.
    Abstract:
    Hypoxia inducible factor-1alpha (HIF-1alpha) plays an important role in maintaining oxygen equilibrium. Pathologic conditions such as hypoxia or ischemia have been reported to cause cellular apoptosis as well as to regulate HIF-1alpha. However, the relationship between HIF-1alpha and neuronal apoptosis in neonatal rats with hypoxia-ischemia brain injury is unclear. We hypothesized that HIF-1alpha will be differentially regulated depending upon the stimuli, such as hypoxia alone versus hypoxia-ischemia (HI), and thus play a role in neuronal apoptosis in developing rat brain. To test this hypothesis, we subjected postnatal day 10 (P10) rats to either hypoxia (8%O(2) and 92%N(2) for 2.5 h) or HI (ligating the right common carotid artery followed by hypoxia). Rat brains from hypoxia, HI, and sham controls were collected to detect HIF-1alpha expression and cellular apoptosis using immunohistochemistry, Western blot analysis, and TdT-mediated dUTP-biotin nick end labeling (TUNEL). We found that HIF-1alpha expression was upregulated at 4 h, peaked at 8 h, and declined at 24 h after hypoxia/HI compared with sham controls. Moreover, HIF-1alpha expression was significantly stronger in hypoxia-alone-treated rats than that in HI-treated rats. Meanwhile, we found that cellular apoptosis was more severe in HI-treated rats than that in hypoxia-treated rats. Furthermore, cellular apoptosis was prominent at 24 h in either hypoxia or HI but more severe in HI-treated rats. Our findings that cellular apoptosis increases with downregulation of HIF-1alpha suggest that HIF-1alpha may play a protective role in regulating cellular apoptosis in neonatal hypoxia-ischemia brain damage (HIBD).
    [Abstract] [Full Text] [Related] [New Search]