These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synergistic toxicity induced by prolonged glutathione depletion and inhibition of nuclear factor-kappaB signaling in liver cells. Author: Jimenez-Lopez JM, Wu D, Cederbaum AI. Journal: Toxicol In Vitro; 2008 Feb; 22(1):106-15. PubMed ID: 17920235. Abstract: TNF-alpha, GSH depletion and CYP2E1 are factors that play an important role in alcoholic liver disease. Activation of NF-kappaB prevents hepatocyte damage caused by TNF-alpha. This work describes the effect of NF-kappaB inhibition on toxicities caused by GSH depletion or arachidonic acid (AA) treatment in liver cells, and evaluates the possible influence of CYP2E1 overexpression. Cells were exposed to the NF-kappaB inhibitor BAY11-7082, in the absence or presence of l-buthionine sulfoximine (BSO) to block GSH synthesis. BSO toxicity was higher in CYP2E1-expressing E47 HepG2 cells compared to control cells; the incubation with BAY11-7082 potentiated BSO toxicity in both cell lines comparably. Several other agents which suppress activation of NF-kappaB increased BSO toxicity in E47 cells. NF-kappaB inhibition, however, did not sensitize E47 cells to AA toxicity. Suppressing activity of NF-kappaB also potentiated BSO, but not AA toxicity, in isolated rat hepatocytes. BAY11-7082 plus BSO induced a greater p38 MAPK activation as compared to BAY11-7082 or BSO alone, and a p38 MAPK inhibitor protected against the synergistic toxicity. In summary, inhibition of NF-kappaB sensitizes liver cells to toxicity linked to GSH depletion, probably accelerating the processes of thiol homeostasis deregulation and induction of apoptosis through a mechanism mediated by p38 MAPK.[Abstract] [Full Text] [Related] [New Search]