These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Geographical classification of honey samples by near-infrared spectroscopy: a feasibility study. Author: Woodcock T, Downey G, Kelly JD, O'Donnell C. Journal: J Agric Food Chem; 2007 Oct 31; 55(22):9128-34. PubMed ID: 17927137. Abstract: The potential of near-infrared (NIR) spectroscopy to determine the geographical origin of honey samples was evaluated. In total, 167 unfiltered honey samples (88 Irish, 54 Mexican, and 25 Spanish) and 125 filtered honey samples (25 Irish, 25 Argentinean, 50 Czech, and 25 Hungarian) were collected. Spectra were recorded in transflectance mode. Following preliminary examination by principal component analysis (PCA), modeling methods applied to the spectral data set were partial least-squares (PLS) regression and soft independent modeling of class analogy (SIMCA); various pretreatments were investigated. For unfiltered honey, best SIMCA models gave correct classification rates of 95.5, 94.4, and 96% for the Irish, Mexican, and Spanish samples, respectively; PLS2 discriminant analysis produced a 100% correct classification for each of these honey classes. In the case of filtered honey, best SIMCA models produced correct classification rates of 91.7, 100, 100, and 96% for the Argentinean, Czech, Hungarian, and Irish samples, respectively, using the standard normal variate (SNV) data pretreatment. PLS2 discriminant analysis produced 96, 100, 100, and 100% correct classifications for the Argentinean, Czech, Hungarian, and Irish honey samples, respectively, using a second-derivative data pretreatment. Overall, while both SIMCA and PLS gave encouraging results, better correct classification rates were found using PLS regression.[Abstract] [Full Text] [Related] [New Search]