These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reinforcement learning with modulated spike timing dependent synaptic plasticity. Author: Farries MA, Fairhall AL. Journal: J Neurophysiol; 2007 Dec; 98(6):3648-65. PubMed ID: 17928565. Abstract: Spike timing-dependent synaptic plasticity (STDP) has emerged as the preferred framework linking patterns of pre- and postsynaptic activity to changes in synaptic strength. Although synaptic plasticity is widely believed to be a major component of learning, it is unclear how STDP itself could serve as a mechanism for general purpose learning. On the other hand, algorithms for reinforcement learning work on a wide variety of problems, but lack an experimentally established neural implementation. Here, we combine these paradigms in a novel model in which a modified version of STDP achieves reinforcement learning. We build this model in stages, identifying a minimal set of conditions needed to make it work. Using a performance-modulated modification of STDP in a two-layer feedforward network, we can train output neurons to generate arbitrarily selected spike trains or population responses. Furthermore, a given network can learn distinct responses to several different input patterns. We also describe in detail how this model might be implemented biologically. Thus our model offers a novel and biologically plausible implementation of reinforcement learning that is capable of training a neural population to produce a very wide range of possible mappings between synaptic input and spiking output.[Abstract] [Full Text] [Related] [New Search]