These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: From rigid base pairs to semiflexible polymers: coarse-graining DNA.
    Author: Becker NB, Everaers R.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021923. PubMed ID: 17930081.
    Abstract:
    The elasticity of double-helical DNA on a nm length scale is captured in detail by the rigid base-pair model, whose conformation variables are the relative positions and orientations of adjacent base pairs. Corresponding sequence-dependent elastic potentials have been obtained from all-atom MD simulation and from high-resolution structural data. On the scale of 100 nm, DNA is successfully described by a continuous wormlike chain model with homogeneous elastic properties, characterized by a set of four elastic constants which have been measured in single-molecule experiments. We present here a theory that links these experiments on different scales, by systematically coarse-graining the rigid base-pair model to an effective wormlike chain description. The average helical geometry of the molecule is accounted for exactly, and repetitive as well as random sequences are considered. Structural disorder is shown to produce a small, additive and short-range correction to thermal conformation fluctuations as well as to entropic elasticity. We also discuss the limits of applicability of the homogeneous wormlike chain on short scales, quantifying the anisotropy of bending stiffness, the non-Gaussian bend angle distribution and the variability of stiffness, all of which are noticeable below a helical turn. The coarse-grained elastic parameters show remarkable overall agreement with experimental wormlike chain stiffness. For the best-matching potential, bending persistence lengths of dinucleotide repeats span a range of 37-53 nm, with a random DNA value of 43 nm. While twist stiffness is somewhat underestimated and stretch stiffness is overestimated, the counterintuitive negative sign and the magnitude of the twist-stretch coupling agree with recent experimental findings.
    [Abstract] [Full Text] [Related] [New Search]