These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The cerebral metabolic ratio is not affected by oxygen availability during maximal exercise in humans. Author: Volianitis S, Fabricius-Bjerre A, Overgaard A, Strømstad M, Bjarrum M, Carlson C, Petersen NT, Rasmussen P, Secher NH, Nielsen HB. Journal: J Physiol; 2008 Jan 01; 586(1):107-12. PubMed ID: 17932151. Abstract: Intense exercise decreases the cerebral metabolic ratio of O(2) to carbohydrates (glucose + (1/2) lactate) and the cerebral lactate uptake depends on its arterial concentration, but whether these variables are influenced by O(2) availability is not known. In six males, maximal ergometer rowing increased the arterial lactate to 21.4 +/- 0.8 mm (mean +/- s.e.m.) and arterial-jugular venous (a-v) difference from -0.03 +/- 0.01 mm at rest to 2.52 +/- 0.03 mm (P < 0.05). Arterial glucose was raised to 8.5 +/- 0.5 mm and its a-v difference increased from 1.03 +/- 0.01 to 1.86 +/- 0.02 mm (P < 0.05) in the immediate recovery. During exercise, the cerebral metabolic ratio decreased from 5.67 +/- 0.52 at rest to 1.70 +/- 0.23 (P < 0.05) and remained low in the early recovery. Arterial haemoglobin O(2) saturation was 92.5 +/- 0.2% during exercise with room air, and it reached 87.6 +/- 1.0% and 98.9 +/- 0.2% during exercise with an inspired O(2) fraction of 0.17 and 0.30, respectively. Whilst the increase in a-v lactate difference was attenuated by manipulation of cerebral O(2) availability, the cerebral metabolic ratio was not affected significantly. During maximal rowing, the cerebral metabolic ratio reaches the lowest value with no effect by a moderate change in the arterial O(2) content. These findings suggest that intense whole body exercise is associated with marked imbalance in the cerebral metabolic substrate preferences independent of oxygen availability.[Abstract] [Full Text] [Related] [New Search]