These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conformation and Interaction of a D,L-alternating peptide with a bilayer membrane: x-ray reflectivity, CD, and FTIR spectroscopy.
    Author: Küsel A, Khattari Z, Schneggenburger PE, Banerjee A, Salditt T, Diederichsen U.
    Journal: Chemphyschem; 2007 Nov 12; 8(16):2336-43. PubMed ID: 17935092.
    Abstract:
    Peptides with alternating amino acid configuration provide helical secondary structures that are especially known from the membrane channel and pore-forming gramicidin A. In analogy to this natural D,L-alternating pentadecapeptide, the potential of D,L-alternating peptides for membrane insertion is investigated using the model dodecamer peptide H-(Phe-Tyr)(5)-Trp-Trp-OH. This aromatic peptide is introduced as a novel pore-forming synthetic analogue of gramicidin A. It forms a well-organized homodimer similar to one of the gramicidin A transmembrane motifs. X-ray reflectivity measurements are performed on solid-supported peptide-lipid complexes to obtain information about the influence of the artificial dodecamer peptide on the bilayer parameters. In addition, Fourier-transform infrared (FTIR) and circular dichroism (CD) spectroscopic studies determine the conformational state of H-(Phe-Tyr)(5)-Trp-Trp-OH within the model membrane. Site-specific iodine labeling assists in determining the topology of the membrane-embedded peptide by pinpointing the position of the iodine label within the bilayers.
    [Abstract] [Full Text] [Related] [New Search]