These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sensory-directed identification of creaminess-enhancing volatiles and semivolatiles in full-fat cream. Author: Schlutt B, Moran N, Schieberle P, Hofmann T. Journal: J Agric Food Chem; 2007 Nov 14; 55(23):9634-45. PubMed ID: 17935296. Abstract: Aimed at defining the chemical nature of creaminess-related flavor compounds in dairy products on a molecular level, a full-fat cream was analyzed for sensorially active volatiles and semivolatiles by means of activity-guided screening techniques. Application of the aroma extract dilution analysis on an aroma distillate prepared from pasteurized cream (30% fat) revealed delta-decalactone, (Z)-6-dodeceno-gamma-lactone, gamma-dodecalactone, delta-dodecalactone, and 3-methylindole with by far the highest flavor dilution (FD) factors among the 34 odor-active volatiles identified. Using a complementary approach involving silica column chromatography and fractionated high-vacuum distillation combined with sensory experiments enabled the additional identification of delta-tetradecalactone, delta-hexadecalactone, gamma-tetradecalactone, gamma-hexadecalactone, and delta-octadecalactone as semivolatile flavor components in the cream fat. Although a series of lactones is present in dairy cream, spiking of cream samples with individual lactones revealed that only the delta-tetradecalactone is able to enhance the typical retronasal creamy flavor of the product when added in amounts above its threshold level of 66 micromol/kg. Rather than contributing to the retronasal aroma of cream, first evidence was found that, particularly, gamma- and delta-octadecalactones and gamma- and delta-eicosalactones are able to influence the melting behavior of cream in the oral cavity.[Abstract] [Full Text] [Related] [New Search]