These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis. Author: Thomsen MH, Thygesen A, Thomsen AB. Journal: Bioresour Technol; 2008 Jul; 99(10):4221-8. PubMed ID: 17936621. Abstract: A pilot plant (IBUS) consisting of three reactors was used for hydrothermal treatment of wheat straw (120-150 kg/h) aiming at co-production of bioethanol (from sugars) and electricity (from lignin). The first reactor step was pre-soaking at 80 degrees C, the second extraction of hemicellulose at 170-180 degrees C and the third improvement of the enzymatic cellulose convertibility at 195 degrees C. Water added to the third reactor passed countercurrent to straw. The highest water addition (600 kg/h) gave the highest hemicellulose recovery (83%). With no water addition xylose degradation occurred resulting in low hemicellulose recovery (33%) but also in high glucose yield in the enzymatic hydrolysis (72 g/100g glucose in straw). Under these conditions most of the lignin was retained in the fibre fraction, which resulted in a lignin rich residue with high combustion energy (up to 31 MJ/kg) after enzymatic hydrolysis of cellulose and hemicellulose.[Abstract] [Full Text] [Related] [New Search]