These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Polynomially scaling spin dynamics simulation algorithm based on adaptive state-space restriction.
    Author: Kuprov I, Wagner-Rundell N, Hore PJ.
    Journal: J Magn Reson; 2007 Dec; 189(2):241-50. PubMed ID: 17936658.
    Abstract:
    We report progress with an old problem in magnetic resonance -- that of the exponential scaling of simulation complexity with the number of spins. It is demonstrated below that a polynomially scaling algorithm can be obtained (and accurate simulations performed for over 200 coupled spins) if the dimension of the Liouville state space is reduced by excluding unimportant and unpopulated spin states. We found the class of such states to be surprisingly wide. It actually appears that a majority of states in large spin systems are not essential in magnetic resonance simulations and can safely be dropped from the state space. In restricted state spaces the spin dynamics simulations scale polynomially. In cases of favourable interaction topologies (sparse graphs, e.g. in protein NMR) the asymptotic scaling is linear, opening the way to direct fitting of molecular structures to experimental spectra.
    [Abstract] [Full Text] [Related] [New Search]