These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Solid-phase PEGylation of recombinant interferon alpha-2a for site-specific modification: process performance, characterization, and in vitro bioactivity.
    Author: Lee BK, Kwon JS, Kim HJ, Yamamoto S, Lee EK.
    Journal: Bioconjug Chem; 2007; 18(6):1728-34. PubMed ID: 17941681.
    Abstract:
    'Solid-phase' PEGylation, in which a conjugation reaction attaches proteins to a solid matrix, has distinct advantages over the conventional, solution-phase process. We report a case study in which recombinant interferon (rhIFN) alpha-2a was adsorbed to a cation-exchange resin and PEGylated at the N-terminus by 5, 10, and 20 kDa mPEG aldehydes through reductive alkylation. After PEGylation, a salt gradient elution efficiently purified the mono-PEGylate of unwanted species such as unmodified IFN and unreacted PEG. Mono-PEGylation and purification were integrated into a single, chromatographic step. Depending on the molecular weight of the mPEG aldehyde, the mono-PEGylation yield ranged from 50 to 65%. Major problems associated with the solution-phase process such as random or uncontrollable multi-PEGylation and post-PEGylation purification difficulties were overcome. N-terminus sequencing and MALDI-TOF mass spectrophometry confirmed that the PEG molecule was conjugated only to the N-terminus. A cell proliferation study indicated reduced antiviral activity of the mono-PEGylate compared to that of the unmodified IFN. As higher molecular weight PEG was conjugated, in vitro bioactivity and antibody binding activity, as measured by a surface plasmon resonance biosensor, decreased. Nevertheless, trypsin resistance and thermal stability were considerably improved .
    [Abstract] [Full Text] [Related] [New Search]