These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and characterization of novel injectable, biodegradable and in situ crosslinkable poly(hexamethylene-carbonate-fumarate), poly(hexamethylene carbonate) diacrylate and poly(ethylene glycol fumarate-co-hexamethylene carbonate-fumarate) scaffolds for bone tissue engineering. Author: Sharifi S, Mirzadeh H, Imani M, Atai M, Bakhshi R, Ziaee F. Journal: Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():791-4. PubMed ID: 17945601. Abstract: A series of novel self-crosslinkable and biodegradable polymers; poly(hexamethylene carbonate-fumarate), poly(hexamethylene carbonate) diacrylate and their amphiphilic copolymers with polyethylene glycol, poly(ethylene glycol fumarate-co-hexamethylene carbonate-fumarate) (PEGF-co-PHMCF) were developed for tissue engineering using novel synthesis approach. These novel polymers were fully characterized using nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry, rheometry and shrinkage strain measurement. The cytocompatibility of macromers and their networks were evaluated by [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay. The synthetic macromers were light colored with self-crosslinking ability via both photocrosslinking and chemical crosslinking. These polymers can be used as precursors to prepare polymer networks and scaffolds with controlled hydrophilicity, biodegradability and mechanical characteristics for application in cell delivery, tissue engineering and controlled release of biologically active agents.[Abstract] [Full Text] [Related] [New Search]