These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spiro- and dispiro-1,2-dioxolanes: contribution of iron(II)-mediated one-electron vs two-electron reduction to the activity of antimalarial peroxides. Author: Wang X, Dong Y, Wittlin S, Creek D, Chollet J, Charman SA, Tomas JS, Scheurer C, Snyder C, Vennerstrom JL. Journal: J Med Chem; 2007 Nov 15; 50(23):5840-7. PubMed ID: 17949067. Abstract: Fourteen spiro- and dispiro-1,2-dioxolanes were synthesized by peroxycarbenium ion annulations with alkenes in yields ranging from 30% to 94%. Peroxycarbenium ion precursors included triethylsilyldiperoxyketals and -acetals derived from geminal dihydroperoxides and from a new method employing triethylsilylperoxyketals and -acetals derived from ozonolysis of alkenes. The 1,2-dioxolanes were either inactive or orders of magnitude less potent than the corresponding 1,2,4-trioxolanes or artemisinin against P. falciparum in vitro and P. berghei in vivo. In reactions with iron(II), the predominant reaction course for 1,2-dioxolane 3a was two-electron reduction. In contrast, the corresponding 1,2,4-trioxolane 1 and the 1,2,4-trioxane artemisinin undergo primarily one-electron iron(II)-mediated reductions. The key structural element in the latter peroxides appears to be an oxygen atom attached to one or both of the peroxide-bearing carbon atoms that permits rapid beta-scission reactions (or H shifts) to form primary or secondary carbon-centered radicals rather than further reduction of the initially formed Fe(III) complexed oxy radicals.[Abstract] [Full Text] [Related] [New Search]