These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural organization of the "zipper line" in Drosophila species with giant spermatozoa. Author: Dallai R, Mercati D, Giusti F. Journal: J Struct Biol; 2008 Jan; 161(1):43-54. PubMed ID: 17949997. Abstract: The "zipper line" of Drosophila melanogaster and of Drosophila species characterized by giant spermatozoa (D. hydei, D. kanekoi and D. bifurca) was studied by electron microscopy using conventional thin-sections, lectin labeling and freeze-fracture replicas. In cross sections the membrane specializations are located either at the level of the short cistern close to the large mitochondrial derivative where a small tuft of glycocalyx is visible or, in species characterized by long spermatozoa, along a cistern beneath the plasma membrane. In correspondence of such cistern, the plasma membrane exhibits a thick and extended glycocalyx. At this level, as well as at the short tuft of D. melanogaster, alpha-mannose residues were detected. The "zipper" of D. melanogaster consists of rows of intramembrane particles longitudinally disposed along the sperm tail and associated with the external face of the plasma membrane. On the protoplasmatic face a narrow ribbon of transversal grooves is visible. Freeze-fracture replicas have revealed, in the region characterized by extended glycocalyx, the presence of a large ribbon of intramembrane particles disposed in parallel transversal rows, associated with the protoplasmatic membrane face. On the complementary external face a ribbon of parallel transversal grooves was observed. It is suggested that membrane specializations are mechanical devices to protect spermatozoa from torsion and bending in the seminal vesicles and then in the female storage organ.[Abstract] [Full Text] [Related] [New Search]