These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: FXR-deficiency confers increased susceptibility to torpor. Author: Cariou B, Bouchaert E, Abdelkarim M, Dumont J, Caron S, Fruchart JC, Burcelin R, Kuipers F, Staels B. Journal: FEBS Lett; 2007 Nov 13; 581(27):5191-8. PubMed ID: 17950284. Abstract: The role of the nuclear receptor FXR in adaptive thermogenesis was investigated using FXR-deficient mice. Despite elevated serum bile acid concentrations and increased mRNA expression profiles of thermogenic genes in brown adipose tissue, FXR-deficiency did not alter energy expenditure under basal conditions. However, FXR-deficiency accelerated the fasting-induced entry into torpor in a leptin-dependent manner. FXR-deficient mice were also extremely cold-intolerant. These altered responses may be linked to a more rapid decrease in plasma concentrations of metabolic fuels (glucose, triglycerides) thus impairing uncoupling protein 1-driven thermogenesis. These results identify FXR as a modulator of energy homeostasis.[Abstract] [Full Text] [Related] [New Search]