These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of a PKCepsilon-dependent regulation of myocardial contraction by epicatechin-3-gallate.
    Author: Li D, Yang C, Chen Y, Tian J, Liu L, Dai Q, Wan X, Xie Z.
    Journal: Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H345-53. PubMed ID: 17951366.
    Abstract:
    In this study, the effects of tea catechins and tea theaflavins on myocardial contraction were examined in isolated rat hearts using a Langendorff-perfusion system. We found that both tea catechins and theaflavins had positive inotropic effects on the myocardium. Of the tested chemicals, epicatechin-3-gallate (ECG) and theaflavin-3,3'-digallate (TF(4)) appear to be the most effective tea catechin and theaflavin, respectively. Further studies of ECG-induced positive inotropy revealed the following insights. First, unlike digitalis drugs, ECG had no effect on intracellular Ca(2+) level in cultured adult cardiac myocytes. Second, it activated PKCepsilon, but not PKCalpha, in the isolated hearts as well as in cultured cells. Neither a phospholipase C (PLC) inhibitor (U73122) nor the antioxidant N-acetyl cysteine (NAC) affected the ECG-induced activation of PKCepsilon. Third, inhibition of PKCepsilon by either chelerythrine chloride (CHE) or PKCepsilon translocation inhibitor peptide (TIP) caused a partial reduction of ECG-induced increases in myocardial contraction. Moreover, NAC was also effective in reducing the effects of ECG on myocardial contraction. Finally, pretreatment of the heart with both CHE and NAC completely abolished ECG-induced inotropic effects on the heart. Together, these findings indicate that ECG can regulate myocardial contractility via a novel PKCepsilon-dependent signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]