These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Autoantibody epitopes to the smaller isoform of glutamate decarboxylase do not differ in Swedish and Japanese type 1 diabetes patients and may be associated with high-risk human leucocyte antigen class II alleles.
    Author: Maruyama T, Oak S, Hall TR, Banga JP, Ortqvist E, Ettinger RA, Endl J, Hampe CS.
    Journal: Clin Exp Immunol; 2007 Dec; 150(3):416-21. PubMed ID: 17956579.
    Abstract:
    Type 1 diabetes (T1D) is an autoimmune disease with a strong human leucocyte antigen (HLA) class II association. Depending on geographic locations, the disease-associated HLA class II alleles vary. We evaluated the beta cell-specific autoimmunity reflected in autoantibodies directed to the smaller isoform of glutamate decarboxylase (GAD65) in Japanese and Swedish T1D patients. GAD65Ab epitope specificities were assessed using GAD65-specific recombinant Fab. GAD65Ab epitope specificities did not differ between Swedish and Japanese patients. Only recognition of the MICA-4-defined middle epitope was significantly stronger in the Japanese T1D patient group compared to the Swedish T1D patients (P = 0.001). Binding to the b96.11-defined middle epitope was substantial in both groups and showed significant associations with high-risk HLA class II haplotypes. In the Japanese T1D group the association was with haplotype DRB1*0802-DQB1*0302 (P = 0.0008), while in the Swedish T1D patients binding to the b96.11-defined epitope as associated with the presence of high-risk HLA genotypes DR3-DQB1*0201 and/or DR4-DQB1*0302 (P = 0.02). A significant association between reduction in binding in the presence of recombinant Fab (rFab) DPD and high-risk allele DQB1*0201 was found (P = 0.008) in the Swedish T1D patients only. We hypothesize that epitope-specific autoantibodies effect the peptide presentation on HLA class II molecules by modulating antigen uptake and processing. Molecular modelling of the high-risk HLA class II molecules will be necessary to test whether these different molecules present similar peptide-binding specificities.
    [Abstract] [Full Text] [Related] [New Search]