These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Coactivator requirements for p53-dependent transcription in the yeast Saccharomyces cerevisiae.
    Author: Yousef AF, Xu GW, Mendez M, Brandl CJ, Mymryk JS.
    Journal: Int J Cancer; 2008 Feb 15; 122(4):942-6. PubMed ID: 17957787.
    Abstract:
    p53 is a sequence-specific DNA-binding transcription factor and key regulator of cell cycle arrest and apoptosis. p53 is mutated in most human cancers and these mutations generally impair its ability to activate transcription. When expressed in Saccharomyces cerevisiae, p53 acts as a strong transcriptional activator allowing yeast to be used as a model system to study the effects of p53 mutations on activity. However, little is known about the exact mechanisms by which p53 functions in yeast. Using 76 mutant yeast strains, we have evaluated the effect of deleting components of the ADA, COMPASS, INO80, ISW1, Mediator, RSC, SAGA, SAS, SLIK, SWI/SNF, and SWR1 transcriptional regulatory complexes on p53-dependent transcription. In addition, we examined the role of histone H2B ubiquitylation by Rad6/Bre1 on p53 activation. Overall, our analysis indicates that there are several remarkable similarities between p53-dependent transcription in yeast and mammalian cells, suggesting that yeast can serve as a valid model system for at least some aspects of p53 function.
    [Abstract] [Full Text] [Related] [New Search]