These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Deletion of exon 8 increases cisplatin-induced E-cadherin cleavage. Author: Fuchs M, Hermannstädter C, Hutzler P, Häcker G, Haller F, Höfler H, Luber B. Journal: Exp Cell Res; 2008 Jan 01; 314(1):153-63. PubMed ID: 17959171. Abstract: E-Cadherin-mediated cell-cell adhesion plays a key role in epithelial cell survival and loss of E-cadherin or beta-catenin expression is associated with invasive tumor growth. Somatic E-cadherin mutations have been identified in sporadic diffuse-type gastric carcinoma. Here, we analysed the fate of E-cadherin with an in frame deletion of exon 8 compared to wild-type E-cadherin and the involved signalling events during cisplatin-induced apoptosis. We report that mutant E-cadherin was more readily cleaved during apoptosis than the wild-type form. Also beta-catenin, an important binding partner of E-cadherin, was processed. E-cadherin cleavage resulted in disconnection of the actin cytoskeleton and accumulation of E-cadherin and beta-catenin in the cytoplasm. Inhibitor studies demonstrated that E-cadherin cleavage was caused by a caspase-3-mediated mechanism. We identified the Akt/PKB and the ERK1/2 signalling pathways as important regulators since inhibition resulted in increased E-cadherin cleavage and apoptosis. In summary, we clearly demonstrate that somatic E-cadherin mutations affect apoptosis regulation in that way that they can facilitate the disruption of adherens junctions thereby possibly influencing the response to cisplatin-based chemotherapy. Elucidating the mechanisms that regulate the apoptotic program of tumor cells can contribute to a better understanding of tumor development and potentially be relevant for therapeutic drug design.[Abstract] [Full Text] [Related] [New Search]