These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Asymmetrical flow field-flow fractionation coupled with multi-angle light scattering and refractive index detections for characterization of ultra-high molar mass poly(acrylamide) flocculants. Author: Leeman M, Islam MT, Haseltine WG. Journal: J Chromatogr A; 2007 Nov 23; 1172(2):194-203. PubMed ID: 17961584. Abstract: The molar mass distributions of ultra-high molar mass polyacrylamide-based flocculants were measured using asymmetrical flow field-flow fractionation (AFFFF) coupled with multi-angle light scattering and refractive index detectors. The mass load onto the separation channel was found to be critical in obtaining a good size separation. The detailed investigation with ultra-high molar mass polyacrylamides found that the injected amount should be </=1microg to ensure separation according to AFFFF mechanism. As a consequence of the limited sample mass load, the signal-to-noise ratio (S/N) of the detector responses was low. To overcome this limitation and thereby to obtain more accurate and precise molar mass and radius information, each sample was injected 10 times and the resulting signals were averaged before calculating the molar mass and radius. In addition, the channel was equipped with a slotted outlet to increase the concentration of sample passing through the detectors. After implementing the above strategies, it was possible to perform separation of polymers having molar mass and size as high as 10(8)gmol(-1) and root-mean-square radius of approximately 250nm, respectively. The resulting weight-average molar mass of the highest MW sample was in excess of 18x10(6)gmol(-1).[Abstract] [Full Text] [Related] [New Search]