These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison of the bulk geochemical features and thermal reactivity of kerogens from Mol (Boom Clay), Bure (Callovo-Oxfordian argillite) and Tournemire (Toarcian shales) underground research laboratories.
    Author: Deniau I, Devol-Brown I, Derenne S, Behar F, Largeau C.
    Journal: Sci Total Environ; 2008 Jan 25; 389(2-3):475-85. PubMed ID: 17961636.
    Abstract:
    Deep argillaceous formations are potential repositories for the long-term disposal of nuclear waste because of their low permeability and high sorption capacity with respect to radioelements and heavy metals. Such sedimentary rocks contain organic matter, mostly macromolecular and insoluble (kerogen). Upon temperature elevation related to high-level long-lived radioactive waste disposal, the kerogen may release significant quantities of gaseous and liquid effluents, especially oxygen-containing ones, which may influence the ability of the clay to retain radionuclides. The aim of the present study is to assess the global geochemical features and the thermal reactivity of the kerogens isolated from samples collected in the Bure and Tournemire sites, France (Callovo-Oxfordian Clay and Toarcian Shales, respectively) and to draw comparisons with data previously obtained for the Mol site, Belgium (Boom Clay). The study is based on a combination of elemental, spectroscopic (FTIR, solid state (13)C NMR) and pyrolytic (Rock-Eval pyrolysis, Curie point pyrolysis-gas chromatography/mass spectrometry) analyses. Different levels of maturity and resulting differences in the relative abundance of oxygen-containing groups were thus observed for the three kerogens. This is linked with differences in their ability to generate CO(2) and various oxygen-containing, low molecular weight, water-soluble compounds under thermal stress, decreasing from Mol to Bure and to Tournemire.
    [Abstract] [Full Text] [Related] [New Search]