These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Physiological role of L-type Ca2+ channels in marginal cells in the stria vascularis of guinea pigs.
    Author: Inui T, Mori Y, Watanabe M, Takamaki A, Yamaji J, Sohma Y, Yoshida R, Takenaka H, Kubota T.
    Journal: J Physiol Sci; 2007 Oct; 57(5):287-98. PubMed ID: 17963592.
    Abstract:
    Using immunohistochemical and electrophysiological methods, we investigated the role of L-type Ca(2+) channels in the regulation of the endocochlear potential (EP) of the endolymphatic surface cells (ESC) of the guinea pig stria vascularis. The following findings were made: (1) Administration of 30 microg/ml nifedipine via a vertebral artery significantly suppressed the transient asphyxia-induced decrease in the EP (TAID) and the transient asphyxia-induced increase in the Ca(2+), referred to as TAIICa, concentration in the endolymph ([Ca](e)). (2) The endolymphatic administration of 1 microg/ml nifedipine significantly inhibited the TAID as well as the TAIICa. The endolymphatic administration of nifedipine (0.001-10 microg/ml) inhibited the TAID in a dose-dependent manner. (3) The endolymphatic administration of (+)-Bay K8644, an L-type Ca(2+) channel closer, significantly inhibited the TAID, whereas (-)-Bay K8644, an L-type Ca(2+) channel opener, caused a large decrease in the EP from approximately +75 mV to approximately +20 mV at 10 min after the endolymphatic administration. (4) By means of immunohistochemistry, a positive staining reaction with L-type Ca(2+) channels was detected in the marginal cells of the stria vascularis. (5) Under the high [Ca](e) condition, we examined the mechanism of the TAIICa and hypothesized that the TAIICa might have been caused by the decrease in the EP through a shunt pathway in the ESC. (6) The administration of nifedipine to the endolymph significantly inhibited the Ba(2+)-induced decrease in the EP. These findings support the view that L-type Ca(2+) channels in the marginal cells regulate the EP, but not directly the TAIICa.
    [Abstract] [Full Text] [Related] [New Search]