These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mannitol production in fungi during glucose catabolism.
    Author: Boonsaeng V, Sullivan PA, Shepherd MG.
    Journal: Can J Microbiol; 1976 Jun; 22(6):808-16. PubMed ID: 179688.
    Abstract:
    The levels of phosphofructokinase (EC 2.7.1.11) and mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) have been determined in a number of Mucor and Penicillium species. Mannitol-1-phosphate dehydrogenase was found in only one species of mucor, Mucor rouxii, and this with a specific activity much lower than that found in Penicillium species. All of the fungi tested in the Ascomycetes class exhibited mannitol-1-phosphate dehydrogenase activity. Interference from both mannitol-1-phosphate dehydrogenase and NADH oxidase (EC 1.6.99.5) caused some difficulty initially in detecting phosphofructokinase in Penicillium species; the Penicillium phosphofructokinase is very unstable. Penicillium notatum accumulates mannitol intracellularly; detection of mannitol-1-phosphate dehydrogenase and mannitol-1-phosphatase (EC 3.1.3.22) activity in cell-free extracts indicates that the mannitol is formed from glucose via fructose-6-phosphate and mannitol-1-phosphate; no direct reduction of fructose to mannitol could be detected. The mannitol-1-phosphate dehydrogenase was specific for mannitol-1-phosphate and fructose-6-phosphate; NADP+(H) could not replace NAD+(H). The phosphatase (EC3.1.3.22) exhibited a distinct preference for mannitol-1-phosphate as substrate; all other substrates tested exhibited less than 25% of the activity observed with mannitol-1-phosphate.
    [Abstract] [Full Text] [Related] [New Search]