These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Numerically-simulated induced electric field and current density within a human model located close to a z-gradient coil.
    Author: Li Y, Hand JW, Wills T, Hajnal JV.
    Journal: J Magn Reson Imaging; 2007 Nov; 26(5):1286-95. PubMed ID: 17969144.
    Abstract:
    PURPOSE: To simulate exposure (e.g., during interventional procedures) of a worker close to an operating MR scanner by calculating electric fields and current density within an anatomically realistic body model due to a z-gradient coil and to compare results with safety guidelines and European Directive 2004/40/EC. MATERIALS AND METHODS: Electric field and current density in an adult male model located at three positions within the range 0.19-0.44 m from the end of a generic z-gradient coil were calculated using the time-domain finite integration technique (FIT). Frequency scaling was used in which quasistatic conditions were assumed and results obtained at 1 MHz (assuming tissue conductivity values at 1 kHz) were scaled to 1 kHz. RESULTS: Current density (averaged over 1 cm(2)) in central nervous system (CNS) tissues up to 20.6 mA m(-2) and electric fields (averaged over 5 mm) up to 4.1 V m(-1) were predicted for a gradient of 10 mT m(-1) and slew rate of 10 T m(-1) second(-1). CONCLUSION: Compliance with 2004/40/EC, and with basic restriction values of Institute of Electrical and Electronics Engineers (IEEE) C95.6-2002, was predicted only at impracticably low gradients/slew rates in the ranges 4.9-9.1 mT m(-1)/4.9-9.1 T m(-1) second(-1) and 5-21 mT m(-1)/5-21 T m(-1) second(-1), respectively.
    [Abstract] [Full Text] [Related] [New Search]