These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Optimizing normoxic conditions in liver devices using enhanced gel matrices.
    Author: Niu M, Clemens MG, Coger RN.
    Journal: Biotechnol Bioeng; 2008 Apr 15; 99(6):1502-12. PubMed ID: 17969150.
    Abstract:
    For in vitro liver replacement devices, such as packed bed bioreactors, to maintain the essential functions of the liver, they must at least successfully support hepatocytes, the parenchymal cell of the liver. In vivo, the liver is a major consumer of oxygen. Hence it is unsurprising that the limited transport distance of oxygen (O(2)) governs the dimensions of the cellular space of engineered devices. Because cellular space capacity directly affects the device's performance, O(2) transport is a critical issue in the scale up of bioreactor designs. In the current investigation, the microporosity of the extracellular matrix (ECM) has been modified to further improve O(2) transport in packed bed devices beyond that previously reported in the literature. These improvements to the O(2) enhancement technique enabled O(2) transport distances of 481.7 +/- 12.5 microm to be achieved under acellular conditions; and distances of 418.1 +/- 6.0 microm to be attained in the presence of 1 million hepatocytes. Both values are significantly greater than the 170 microm baseline attained when 10(6) hepatocytes are packed within normal non-enhanced ECM gels. The study's results also illustrate that the O(2) enhancement technique has the added benefit of preventing regions of severe hypoxia and hyperoxia from developing within the cellular space. As such, enhanced ECM gels enable packed hepatocytes to maintain better hepatocellular metabolic status than is possible with normal non-enhanced gels.
    [Abstract] [Full Text] [Related] [New Search]