These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization. Author: Stone MR, O'Neill A, Lovering RM, Strong J, Resneck WG, Reed PW, Toivola DM, Ursitti JA, Omary MB, Bloch RJ. Journal: J Cell Sci; 2007 Nov 15; 120(Pt 22):3999-4008. PubMed ID: 17971417. Abstract: Intermediate filaments, composed of desmin and of keratins, play important roles in linking contractile elements to each other and to the sarcolemma in striated muscle. We examined the contractile properties and morphology of fast-twitch skeletal muscle from mice lacking keratin 19. Tibialis anterior muscles of keratin-19-null mice showed a small but significant decrease in mean fiber diameter and in the specific force of tetanic contraction, as well as increased plasma creatine kinase levels. Costameres at the sarcolemma of keratin-19-null muscle, visualized with antibodies against spectrin or dystrophin, were disrupted and the sarcolemma was separated from adjacent myofibrils by a large gap in which mitochondria accumulated. The costameric dystrophin-dystroglycan complex, which co-purified with gamma-actin, keratin 8 and keratin 19 from striated muscles of wild-type mice, co-purified with gamma-actin but not keratin 8 in the mutant. Our results suggest that keratin 19 in fast-twitch skeletal muscle helps organize costameres and links them to the contractile apparatus, and that the absence of keratin 19 disrupts these structures, resulting in loss of contractile force, altered distribution of mitochondria and mild myopathy. This is the first demonstration of a mammalian phenotype associated with a genetic perturbation of keratin 19.[Abstract] [Full Text] [Related] [New Search]