These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A Brownian Dynamics computational study of the interaction of spinach plastocyanin with turnip cytochrome f: the importance of plastocyanin conformational changes.
    Author: Gross EL.
    Journal: Photosynth Res; 2007; 94(2-3):411-22. PubMed ID: 17972160.
    Abstract:
    Brownian Dynamics (BD) computer simulations were used to study electrostatic interactions between turnip cytochrome f (cyt f) and spinach plastocyanin (PC). Three different spinach PC structures were studied: The X-ray crystal structure of Xue and coworkers [(1998) Protein Sci 7:2099-2105] and the NMR structure of Musiani et al. [(2005) J Biol Chem 280:18833-18841] and Ubbink and co-workers [(1998) Structure 6:323-335]. Significant differences exist in the backbone conformation between the PC taken from Ubbink and coworkers and the other two PC structures particularly the regions surrounding G10, E59-E60, and D51. Complexes formed in BD simulations using the PC of Ubbink and colleagues had a smaller Cu-Fe distance than the other two. These results suggest that different PC conformations may exist in solution with different capabilities of forming electron-transfer-active docks. All three types of complexes show electrostatic contacts between D42, E43, and D44 on PC and K187 on cyt f as well as between E59 on PC and K58 on cyt f. However, the PC of Ubbink and coworkers reveals additional contacts between D51 and cyt f as a result of the difference in backbone configuration. A second minor complex component was observed for the PC of Ubbink and co-workers and Xue and co-workers which had contacts between K187 on cyt f and E59 and E60 on PC rather than between K187 on cyt f and D42-D44 on PC as observed for the major components. This second type of complex may represent an earlier complex which rearranges to form a final complex capable of electron transfer.
    [Abstract] [Full Text] [Related] [New Search]