These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Efficient identification and quantification of proteins using isotope-coded 1-(6-methylnicotinoyloxy)succinimides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Author: Tsumoto H, Murata C, Miyata N, Kohda K, Taguchi R. Journal: Rapid Commun Mass Spectrom; 2007; 21(23):3815-24. PubMed ID: 17972273. Abstract: We describe a convenient and useful method for the identification and relative quantification of proteins using light and heavy reagents, 1-(6-methylnicotinoyloxy)succinimides (6-CH(3)-Nic-NHS and 6-CD(3)-Nic-NHS, respectively). This method is based on the chemical derivatization of amino groups of tryptic peptides with these reagents, i.e., the basic moiety of the reagents thus incorporated into both the N-terminal amino group and the epsilon-amino group of the lysine residue would improve the ionization efficiency of tryptic peptides. An increase in protein sequence coverage is achieved by derivatization with these reagents or by combination of mass values before and after derivatization. Since a combination of 6-CH(3)-Nic-NHS and d(3)-labeled reagent (6-CD(3)-Nic-NHS) generates a 3 Da mass difference per reaction site, the d(3)-labeled reagent shifts the mass values of d(0)-labeled peptides according to the number of reactive amino groups in the peptides. In the case of tryptic peptides, the mass values of C-terminal arginine and lysine peptides are shifted by 3 and 6 Da, respectively. Further, the 3 Da mass difference between 6-CH(3)-Nic-NHS and 6-CD(3)-Nic-NHS offers a means for the relative quantification of protein by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.[Abstract] [Full Text] [Related] [New Search]