These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of molecular marker source profiles for emissions from on-road gasoline and diesel vehicle fleets. Author: Lough GC, Christensen CG, Schauer JJ, Tortorelli J, Mani E, Lawson DR, Clark NN, Gabele PA. Journal: J Air Waste Manag Assoc; 2007 Oct; 57(10):1190-9. PubMed ID: 17972764. Abstract: As part of the Gasoline/Diesel PM Split Study, relatively large fleets of gasoline vehicles and diesel vehicles were tested on a chassis dynamometer to develop chemical source profiles for source attribution of atmospheric particulate matter in California's South Coast Air Basin. Gasoline vehicles were tested in cold-start and warm-start conditions, and diesel vehicles were tested through several driving cycles. Tailpipe emissions of particulate matter were analyzed for organic tracer compounds, including hopanes, steranes, and polycyclic aromatic hydrocarbons. Large intervehicle variation was seen in emission rate and composition, and results were averaged to examine the impacts of vehicle ages, weight classes, and driving cycles on the variation. Average profiles, weighted by mass emission rate, had much lower uncertainty than that associated with intervehicle variation. Mass emission rates and elemental carbon/organic carbon (EC/OC) ratios for gasoline vehicle age classes were influenced most by use of cold-start or warm-start driving cycle (factor of 2-7). Individual smoker vehicles had a large range of mass and EC/OC (factors of 40 and 625, respectively). Gasoline vehicle age averages, data on vehicle ages and miles traveled in the area, and several assumptions about smoker contributions were used to create emissions profiles representative of on-road vehicle fleets in the Los Angeles area in 2001. In the representative gasoline fleet profiles, variation was further reduced, with cold-start or warm-start and the representation of smoker vehicles making a difference of approximately a factor of two in mass emission rate and EC/OC. Diesel vehicle profiles were created on the basis of vehicle age, weight class, and driving cycle. Mass emission rate and EC/OC for diesel averages were influenced by vehicle age (factor of 2-5), weight class (factor of 2-7), and driving cycle (factor of 10-20). Absolute and relative emissions of molecular marker compounds showed levels of variation similar to those of mass and EC/OC.[Abstract] [Full Text] [Related] [New Search]