These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Distinctive interactions at multiple site 2 subsites by allele-specific rat and mouse ly49 determine functional binding and class I MHC specificity. Author: Lavender KJ, Chau HH, Kane KP. Journal: J Immunol; 2007 Nov 15; 179(10):6856-66. PubMed ID: 17982076. Abstract: Rodent Ly49 exhibit allele-specific MHC I recognition, yet the interaction site, site 2, encompassing the area below the MHC peptide-binding groove, the alpha3 domain, and associated beta(2) microglobulin, is highly conserved among rat and mouse MHC I alleles. We previously demonstrated that allele-specific Ly49 recognition can be affected by polymorphisms specifically in the peptide anchor-binding and supertype-defining B pocket of MHC I, possibly through differential conformations assumed by solvent-exposed interaction residues when articulating with this pocket. Through mutagenesis of RT1-A1(c) and H-2D(d), we map for the first time the interaction site(s) on rat MHC I mediating rat Ly49i2 recognition and the previously unexamined Ly49G(BALB/c) interaction with H-2D(d). We demonstrate that rat Ly49i2 and mouse Ly49G use both unique and common interactions at three MHC I H chain subsites to mediate functional binding and allele-specific recognition. We find that the F subsite, formed by solvent-exposed residues below the more conserved C-terminal anchor residue-binding F pocket, acts as an anchoring location for both Ly49i2 and Ly49G, whereas these receptors exhibit distinctive reliance on solvent-exposed residues articulating with the polymorphic anchor-binding and supertype-defining pocket(s) at subsite B, as well as on interaction residues at subsite C in the MHC I alpha3 domain. Our findings, combined with previous Ly49A/H-2D(d) and Ly49C/H-2K(b) cocrystal data, suggest how allele-specific MHC I conformations and Ly49 polymorphisms may affect Ly49 placement on MHC I ligands and residue usage at site 2, thereby mediating allele-specific recognition at the highly conserved MHC I interface.[Abstract] [Full Text] [Related] [New Search]