These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of the d orbital occupation on the nature and strength of copper cation-pi interactions: threshold collision-induced dissociation and theoretical studies.
    Author: Ruan C, Yang Z, Rodgers MT.
    Journal: Phys Chem Chem Phys; 2007 Nov 28; 9(44):5902-18. PubMed ID: 17989799.
    Abstract:
    Threshold collision-induced dissociation techniques are employed to determine the bond dissociation energies of a wide variety of copper cation-pi complexes, Cu(+)(pi-ligand), where pi-ligand = benzene, flurobenzene, chlorobenzene, bromobenzene, iodobenzene, phenol, toluene, anisole, pyrrole, N-methylpyrrole, indole, naphthalene, aniline, N-methylaniline, and N,N-dimethylaniline. The primary and lowest energy dissociation pathway corresponds to the endothermic loss of the intact neutral pi-ligand for all complexes except those to N-methylpyrrole, indole, aniline, N-methylaniline, and N,N-dimethylaniline. In the latter complexes, the primary dissociation pathway corresponds to loss of the intact ligand accompanied by charge transfer, thereby producing a neutral copper atom and ionized pi-ligand. Fragmentation of the pi-ligands is also observed at elevated energies in several cases. Theoretical calculations at the B3LYP/6-311G(d,p) level of theory are used to determine the structures, vibrational frequencies, and rotational constants of these complexes. Multiple low-energy conformers are found for all of the copper cation-pi complexes. Theoretical bond dissociation energies are determined from single point energy calculations at the B3LYP/6-311+G(3df,2p) level of theory using the B3LYP/6-311G(d,p) optimized geometries. The agreement between theory and experiment is very good for most complexes. The nature and strength of the binding in these copper cation-pi complexes are studied and compared with the corresponding cation-pi complexes to Na(+). Natural bond orbital analyses are carried out to examine the influence of the d orbital occupation on copper cation-pi interactions.
    [Abstract] [Full Text] [Related] [New Search]